Moving Average Forecasting. Introduction Wie Sie vielleicht erraten, wir sind auf der Suche nach einigen der primitivsten Ansätze zur Prognose Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Kalkulationstabellen. In diesem Sinne werden wir weiter vorbei Beginnend am Anfang und beginnen mit Moving Average Prognosen zu arbeiten. Moving Average Prognosen Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen unabhängig davon, ob sie glauben, sie sind alle College-Studenten tun sie die ganze Zeit Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie gehen werden Haben vier Tests während des Semesters Lassen Sie Sie davon ausgehen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score. Was denkst du, dein Lehrer würde für Ihre nächste Test-Score vorauszusagen. Was denkst du, deine Freunde können voraussagen Für Ihre nächste Test-Score. Was denkst du, deine Eltern könnten für Ihre nächste Test-Score prognostizieren. Um trotz aller Blabbing können Sie tun, um Ihre fr Iend und Eltern, sie und dein Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas in der Gegend von 85 bekommst, die du gerade bekommen hast. Nun, jetzt gehts an, dass du trotz deiner Selbstbeförderung zu deinen Freunden dich selbst überschätzst Und die Zahl, die Sie weniger für den zweiten Test studieren können und so erhalten Sie eine 73.Now, was sind alle betroffenen und unbeteiligten gehen zu antizipieren Sie werden auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze für sie, um eine Schätzung unabhängig von zu entwickeln Ob sie es mit Ihnen teilen werden. Sie können sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts Er wird zu bekommen 73, wenn er Glück hat. Maybe die Eltern werden versuchen, mehr unterstützen und sagen, Nun, so Weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine 85 73 2 79 steigen. Ich weiß es nicht, vielleicht, wenn du weniger feiern wolltest und den Wiesel über den ganzen Platz wedelnd und wenn du anfingst zu tun Viel mehr studieren könnte man eine höhere score. Both von diesen Schätzungen sind tatsächlich Ly gleitende durchschnittliche Prognosen. Der erste ist mit nur Ihre jüngsten Score zu prognostizieren Ihre zukünftige Leistung Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von data. Let s annehmen Dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinen Verbündeten zu setzen Du nimmst den Test und dein Ergebnis ist eigentlich ein 89 Jeder, auch dich selbst, ist beeindruckt. So jetzt hast du die abschließende Prüfung des Semesters kommen und wie üblich fühlst du die Notwendigkeit, alle zu machen, die ihre Vorhersagen darüber machen, wie du bei dem letzten Test machst. Nun, hoffentlich sehst du das Pattern. Now, hoffentlich können Sie das Muster sehen, was Sie glauben, ist die genaueste. Whistle Während wir arbeiten Jetzt kehren wir zu unserer neuen Reinigungsfirma, die von Ihrer entfremdeten Halbschwester namens Whistle während wir arbeiten Sie haben einige vergangene Verkaufsdaten Vertreten durch den folgenden Abschnitt aus einer Kalkulationstabelle Wir stellen zunächst die Daten für eine dreistellige gleitende durchschnittliche Prognose dar. Der Eintrag für Zelle C6 sollte sein. Jetzt kannst du diese Zellformel in die anderen Zellen C7 bis C11 kopieren. Notice, wie sich der Durchschnitt bewegt Über die jüngsten historischen Daten, sondern nutzt genau die drei letzten Perioden für jede Vorhersage Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln Dies ist definitiv anders als die Exponentielle Glättung Modell I ve enthalten die Vergangenheit Vorhersagen, weil wir sie in der nächsten Web-Seite verwenden, um Vorhersage Gültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zwei Periode gleitende durchschnittliche Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte. Jetzt Sie Kann diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Notice, wie jetzt nur die beiden letzten Stücke historischer Daten für jede Vorhersage verwendet werden D die vergangenen Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognosevalidierung. Einige andere Dinge, die von Bedeutung zu bemerken sind. Für eine m-Periode gleitende durchschnittliche Prognose nur die m neuesten Datenwerte verwendet werden, um die Vorhersage Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Vergangenheit Vorhersagen, beachten Sie, dass die erste Vorhersage tritt in der Periode m 1.Both von diesen Fragen wird sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Function Jetzt müssen wir entwickeln Der Code für die gleitende durchschnittliche Prognose, die flexibler genutzt werden kann Der Code folgt Beachten Sie, dass die Eingaben für die Anzahl der Perioden, die Sie in der Prognose verwenden möchten, und das Array von historischen Werten Sie können es speichern, was auch immer Arbeitsmappe Sie wollen. Funktion MovingAverage Historical, NumberOfPeriods Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Accumulation als Single Dim HistoricalSize als Integer. Initialisierung von Variablen Zähler 1 Akkumulation 0. Ermittlung der Größe des Historischen Arrays HistoricalSize. For Counter 1 Zu NumberOfPeriods. Akkumulation der passenden Anzahl der letzten bisher beobachteten Werte. Accumulation Accumulation Historical HistoricalSize - NumberOfPeriods Counter. MovingAverage Accumulation NumberOfPeriods. The Code wird in der Klasse erklärt Sie wollen die Funktion auf der Tabelle zu positionieren, so dass das Ergebnis der Berechnung erscheint, wo es sollte Wie die folgenden. Simple Moving Average - SMA. BREAKING DOWN Simple Moving Average - SMA. A einfach gleitenden Durchschnitt ist anpassbar, dass es für eine andere Anzahl von Zeiträumen berechnet werden kann, einfach durch Hinzufügen der Schlusskurs der Sicherheit für eine Zahl Von Zeitperioden und dann dividiert diese Summe durch die Anzahl der Zeiträume, die den durchschnittlichen Preis der Sicherheit über den Zeitraum gibt Ein einfacher gleitender Durchschnitt glättet die Volatilität und macht es einfacher, die Preisentwicklung einer Sicherheit zu sehen Wenn die einfache Gleitende durchschnittliche Punkte nach oben, bedeutet dies, dass die Sicherheit s Preis steigt Wenn es nach unten zeigt bedeutet, dass die securi Ty s Preis sinkt Je länger der Zeitrahmen für den gleitenden Durchschnitt ist, desto glatter der einfache gleitende Durchschnitt Ein kürzerfristiger gleitender Durchschnitt ist volatiler, aber sein Lesen ist näher an den Quelldaten. Nalytische Bedeutung. Moving Mittelwerte sind ein wichtiges analytisches Werkzeug Verwendet, um aktuelle Preisentwicklung und das Potenzial für eine Veränderung in einem etablierten Trend zu identifizieren Die einfachste Form der Verwendung eines einfachen gleitenden Durchschnitt in der Analyse ist es, um schnell zu identifizieren, ob eine Sicherheit ist in einem Aufwärtstrend oder Abwärtstrend Eine weitere beliebte, wenn auch etwas komplexere analytische Werkzeug, ist es, ein Paar einfacher gleitender Durchschnitte zu vergleichen, wobei jede unterschiedliche Zeitrahmen abdeckt. Wenn ein kurzfristiger einfacher gleitender Durchschnitt über einem längerfristigen Durchschnitt liegt, wird ein Aufwärtstrend erwartet. Auf der anderen Seite ein Langzeitdurchschnitt über einem kürzeren - term durchschnittliche Signale eine Abwärtsbewegung im Trend. Popular Trading Patterns. Two beliebte Trading-Muster, die einfache gleitende Durchschnitte verwenden gehören das Todeskreuz und ein goldenes Kreuz A dea Th Kreuz tritt auf, wenn der 50-tägige einfache gleitende Durchschnitt kreuzt unter dem 200-Tage gleitenden Durchschnitt Dies gilt als ein bärisches Signal, dass weitere Verluste auf Lager sind Das goldene Kreuz tritt auf, wenn ein kurzfristiger gleitender Durchschnitt über eine langfristige Bewegung bricht Durchschnittlich Verstärkt durch hohe Handelsvolumina, kann dies signalisieren weitere Gewinne sind im Speicher. Moving durchschnittliche und exponentielle Glättung Modelle. Als ein erster Schritt in Bewegung über mittlere Modelle, zufällige Wandermodelle und lineare Trend-Modelle, Nicht-Sektion Muster und Trends können mit extrapoliert werden Ein gleitender Durchschnitt oder Glättungsmodell Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten lokalen Durchschnitt, um den aktuellen Wert des Mittelwertes zu schätzen und dann den so zu verwenden Prognose für die nahe Zukunft Dies kann als Kompromiss zwischen dem mittleren Modell und dem zufälligen Walk-ohne-Drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um zu schätzen und zu extrapolieren Ein lokaler Trend Ein gleitender Durchschnitt wird oft als geglättete Version der Originalreihe bezeichnet, weil kurzfristige Mittelung die Wirkung hat, die Beulen in der Originalreihe zu glätten. Durch die Anpassung des Grades der Glättung der Breite des gleitenden Durchschnitts können wir hoffen Schlagen eine Art optimale Balance zwischen der Leistung der mittleren und zufälligen Walk-Modelle Die einfachste Art von Mittelwert-Modell ist die. Einfache gleichgewichtete Moving Average. Die Prognose für den Wert von Y zum Zeitpunkt t 1, die zum Zeitpunkt t gemacht wird gleich Der einfache Durchschnitt der letzten m Beobachtungen. Hier und anderswo verwende ich das Symbol Y-Hut, um für eine Prognose der Zeitreihe Y zu stehen, die am frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde. Dieser Durchschnitt ist in der Periode & lgr; m 1 2 zentriert, was bedeutet, dass die Schätzung von Das lokale Mittel neigt dazu, hinter dem wahren Wert des lokalen Mittels um etwa m 1 2 Perioden zu liegen. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt m 1 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen. Zum Beispiel, wenn Sie die letzten 5 Werte mittelschätzen, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte sein. Beachten Sie, dass wenn m 1, Das einfache gleitende durchschnittliche SMA-Modell entspricht dem zufälligen Walk-Modell ohne Wachstum Wenn m sehr groß ist, vergleichbar mit der Länge der Schätzperiode ist das SMA-Modell gleichbedeutend mit dem mittleren Modell Wie bei jedem Parameter eines Prognosemodells ist es üblich Um den Wert von ki anzupassen Um die bestmögliche Anpassung an die Daten zu erhalten, dh die kleinsten Prognosefehler im Durchschnitt. Hierbei handelt es sich um ein Beispiel für eine Serie, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst wollen wir versuchen, es mit einem zufälligen Spaziergang zu platzieren Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Term. Die zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von dem Rauschen in den Daten die zufälligen Schwankungen sowie das Signal der lokalen Bedeutet, wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Terminen ausprobieren, bekommen wir einen glatteren Prognosen. Der 5-fach einfache gleitende Durchschnitt liefert deutlich kleinere Fehler als das zufällige Spaziergang Modell in diesem Fall Das Durchschnittsalter der Daten in diesem Prognose ist 3 5 1 2, so dass es dazu neigt, hinter Wendepunkte um etwa drei Perioden zurückzukehren. Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später. Nicht, dass die Langzeit - Term Prognosen aus dem SMA Mod El sind eine horizontale gerade Linie, genauso wie im zufälligen Spaziergangmodell So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Allerdings sind die Prognosen aus dem zufälligen Walk-Modell einfach gleich dem letzten beobachteten Wert, die Prognosen von Das SMA-Modell ist gleich einem gewichteten Durchschnitt der jüngsten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Konfidenzgrenzen werden nicht größer, wenn der Prognosehorizont zunimmt. Dies ist offensichtlich nicht korrekt. Leider gibt es keinen zugrunde liegenden Statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Tabellenkalkulation erstellen, in der das SMA-Modell steht Würde zur Vorhersage von 2 Schritten voraus, 3 Stufen voraus, etc. innerhalb der historischen Daten Probe Sie konnten dann die Probe Standardabweichungen der Fehler bei jeder Prognose h Orizon, und konstruieren dann Konfidenzintervalle für längerfristige Prognosen durch Hinzufügen und Subtrahieren von Vielfachen der entsprechenden Standardabweichung. Wenn wir einen 9-fach einfach gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt. Das Durchschnittsalter ist Jetzt 5 Perioden 9 1 2 Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10.Notice, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistiken vergleicht, auch einen 3-Term-Durchschnitt. Model C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um eine kleine Marge über die 3-Term - und 9-Term-Mittelwerte und Ihre anderen stats sind fast identisch Also, bei Modellen mit sehr ähnlichen Fehlerstatistiken können wir wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen. Zurück zum Seitenanfang. Brown s Simple Exponential Glättung exponentiell gewichtet Gleitender Durchschnitt. Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen vollständig ignoriert. Intuitiv sollten die vergangenen Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel die jüngste Beobachtung sollte Bekomme ein bisschen mehr Gewicht als die 2. jüngsten, und die 2. jüngsten sollte ein bisschen mehr Gewicht als die 3. letzte, und so weiter Die einfache exponentielle Glättung SES Modell erreicht dies. Let bezeichnen eine Glättung Konstante eine Zahl zwischen 0 und 1 Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die die aktuelle Ebene repräsentiert, dh der mittlere Mittelwert der Reihe, wie sie von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie dieser berechnet. Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wo die Nähe des interpolierten Wertes auf die meisten re Cent Beobachtung Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert. Egalentlich können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und vorherige Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation Zwischen vorheriger Prognose und vorheriger Beobachtung. In der zweiten Version wird die nächste Prognose durch Anpassung der vorherigen Prognose in Richtung des vorherigen Fehlers um einen Bruchteil erreicht. Ist der Fehler zum Zeitpunkt t In der dritten Version ist die Prognose ein Exponentiell gewichtet, dh ermäßigt gleitender Durchschnitt mit Rabattfaktor 1.Die Interpolationsversion der Prognoseformel ist die einfachste zu verwenden, wenn Sie das Modell auf einer Tabellenkalkulation implementieren, die es in eine einzelne Zelle passt und enthält Zellreferenzen, die auf die vorherige Prognose hinweisen, die vorherige Beobachtung und die Zelle, wo der Wert von gespeichert ist. Hinweis, dass, wenn 1, ist das SES-Modell gleichbedeutend mit einem zufälligen Spaziergang Modell Witz Hout-Wachstum Wenn 0, ist das SES-Modell äquivalent zum mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem mittleren Return to top of page gesetzt ist. Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose ist 1 relativ Zu dem Zeitraum, für den die Prognose berechnet wird. Dies soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden. Daher ist die einfache gleitende Durchschnittsprognose dazu neigt, hinter den Wendepunkten um etwa 1 Perioden zurückzukehren 5 die Verzögerung ist 2 Perioden, wenn 0 2 die Verzögerung 5 Perioden beträgt, wenn 0 1 die Verzögerung 10 Perioden ist, und so weiter. Für ein gegebenes Durchschnittsalter dh Betrag der Verzögerung, ist die einfache exponentielle Glättung SES Prognose etwas überlegen, die einfache Bewegung Durchschnittliche SMA-Prognose, weil sie relativ viel Gewicht auf die jüngste Beobachtung - es ist etwas mehr reagiert auf Veränderungen in der jüngsten Vergangenheit Zum Beispiel ein SMA-Modell mit 9 Begriffe und ein SES-Modell mit 0 2 haben beide ein Durchschnittsalter Von 5 für die da Ta in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und zugleich vergisst es nicht ganz über Werte, die mehr als 9 Perioden alt sind, wie in dieser Tabelle gezeigt. Ein anderer wichtiger Vorteil von Das SES-Modell über das SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht mit einem Solver-Algorithmus optimiert werden kann, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert des SES-Modells für diese Serie erweist sich Um 0 2961 zu sein, wie hier gezeigt. Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 0 2961 3 4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die langfristigen Prognosen aus dem SES-Modell sind Eine horizontale Gerade wie im SMA-Modell und das zufällige Spaziergang Modell ohne Wachstum Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für den Rand Om walk model Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das zufällige Walk-Modell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells, so dass die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für die SES-Modell Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA 1-Term und keinem konstanten Term, der sonst als ARIMA-0,1,1-Modell ohne Konstante bekannt ist. Der MA 1 - Koeffizient im ARIMA-Modell entspricht dem Menge 1 im SES-Modell Wenn Sie beispielsweise ein ARIMA-0,1,1-Modell ohne Konstante an die hier analysierte Baureihe anpassen, erweist sich der geschätzte MA 1 - Koeffizient auf 0 7029, was fast genau ein minus 0 2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA 1-Term mit einer Konstante, dh einem ARIMA 0,1,1-Modell an Mit konstanten Die langfristigen prognosen werden Dann haben Sie einen Trend, der gleich der durchschnittlichen Tendenz ist, die über die gesamte Schätzperiode beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie eine konstante Länge hinzufügen - Exponentieller Trend zu einem einfachen exponentiellen Glättungsmodell mit oder ohne saisonale Anpassung durch Verwendung der Inflationsanpassungsoption im Prognoseverfahren Die entsprechende Inflationsrate pro Wachstumsrate pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell, das an die Daten angepasst ist, geschätzt werden Konjunktion mit einer natürlichen Logarithmus-Transformation, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren. Zurück zum Seitenanfang. Brown s Linear ie doppelte exponentielle Glättung. Die SMA-Modelle und SES-Modelle gehen davon aus, dass es keinen Trend gibt Jede Art in den Daten, die in der Regel ok oder zumindest nicht zu schlecht für 1-Schritt-voraus Prognosen, wenn die Daten relativ noi ist Sy, und sie können modifiziert werden, um einen konstanten linearen Trend wie oben gezeigt zu integrieren. Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet und wenn es nötig ist Prognose mehr als 1 Periode voraus, dann könnte die Schätzung eines lokalen Trends auch ein Problem sein Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungs-LES-Modell zu erhalten, das lokale Schätzungen von Level und Trend berechnet. Der einfachste zeitveränderliche Trend Modell ist Brown s lineares exponentielles Glättungsmodell, das zwei verschiedene geglättete Serien verwendet, die zu verschiedenen Zeitpunkten zentriert sind Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren Eine ausgefeiltere Version dieses Modells, Holt s, ist Unten diskutiert. Die algebraische Form von Brown s linearen exponentiellen Glättungsmodell, wie das des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber e ausgedrückt werden Quivalentformen Die Standardform dieses Modells wird gewöhnlich wie folgt ausgedrückt: S bezeichnet die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch. Erinnern Sie sich, dass unter einfacher exponentieller Glättung dies die Prognose für Y in der Periode t 1 sein würde. Dann sei S die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung unter Verwendung derselben zu der Reihe S erhalten wird. Zunächst ist die Prognose für Y tk für irgendwelche K & sub1 ;, ist gegeben durch. Dies ergibt e 1 0, dh ein wenig zu betrügen, und die erste Prognose gleich der tatsächlichen ersten Beobachtung und e 2 Y 2 Y 1, wonach Prognosen unter Verwendung der obigen Gleichung erzeugt werden, ergibt die gleichen angepassten Werte Als die auf S und S basierende Formel, wenn diese mit S 1 S 1 Y 1 gestartet wurden Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt s Linear Exponential Smoothing. Brown S LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der jüngsten Daten, aber die Tatsache, dass es tut dies mit einem einzigen Glättungsparameter stellt eine Einschränkung auf die Datenmuster, dass es in der Lage ist, die Ebene und Trend sind nicht erlaubt, variieren beim Unabhängige Raten Holt s LES Modell adressiert dieses Problem durch die Einbeziehung von zwei Glättungskonstanten, eine für die Ebene und eine für den Trend Zu jeder Zeit t, wie in Browns Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T T des lokalen Tendenzes Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn das geschätzte Niveau und der Trend zum Zeitpunkt t-1 Sind L t 1 bzw. T t-1, so ist die Prognose für Y t, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1. Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung der Level wird rekursiv durch Interpolation zwischen Y t und seiner Prognose L t-1 T t-1 berechnet, wobei Gewichte von und 1 verwendet werden. Die Änderung des geschätzten Pegels, nämlich L t L t 1, kann als eine verrauschte Messung der Trend zur Zeit t Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L berechnet T L t 1 und die vorherige Schätzung des Trends T t-1 unter Verwendung von Gewichten von und 1.Die Interpretation der Trend-Glättungskonstante ist analog zu der der Pegel-Glättungs-Konstante. Modelle mit kleinen Werten gehen davon aus, dass sich der Trend ändert Nur sehr langsam im Laufe der Zeit, während Modelle mit größeren davon ausgehen, dass es sich schneller ändert Ein Modell mit einem großen glaubt, dass die ferne Zukunft sehr unsicher ist, denn Fehler in der Trendschätzung werden bei der Prognose von mehr als einer Periode voraus Der Seite. Die Glättungskonstanten und können in der üblichen Weise durch Minimierung des mittleren quadratischen Fehlers der 1-Schritt-voraus-Prognosen geschätzt werden. Wenn dies in Statgraphics geschieht, ergeben sich die Schätzungen als 0 3048 und 0 008 Der sehr kleine Wert von Bedeutet, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zur nächsten einnimmt, so dass dieses Modell grundsätzlich versucht, einen langfristigen Trend abzuschätzen. Analog zu dem Begriff des Durchschnittsalters der Daten, die bei der Schätzung von t verwendet werden Die lokale Ebene der Serie, das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, ist proportional zu 1, wenn auch nicht genau gleich. In diesem Fall ergibt sich das 1 0 006 125 Dies ist eine sehr genaue Nummer Insofern als die Genauigkeit der Schätzung von isn t wirklich 3 Dezimalstellen, aber es ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100, so dass dieses Modell durchschnittlich über ziemlich viel Geschichte bei der Schätzung der Trend Die Prognose Handlung ist Unten zeigt, dass das LES-Modell einen eher größeren lokalen Trend am Ende der Serie schätzt als der im SES-Trendmodell geschätzte konstante Trend. Auch der Schätzwert ist nahezu identisch mit dem, der durch die Anpassung des SES-Modells mit oder ohne Trend erhalten wird , So ist dies fast das gleiche model. Now, sehen diese aussehen wie vernünftige Prognosen für ein Modell, das soll einen lokalen Trend schätzen Wenn Sie Augapfel dieser Handlung, sieht es aus, als ob die lokale Tendenz hat sich nach unten am Ende der Serie Wh At ist passiert Die Parameter dieses Modells wurden durch die Minimierung der quadratischen Fehler von 1-Schritt-voraus Prognosen, nicht längerfristige Prognosen geschätzt, in welchem Fall der Trend macht nicht viel Unterschied Wenn alles, was Sie suchen, sind 1 - step-ahead-Fehler, sehen Sie nicht das größere Bild der Trends über 10 oder 20 Perioden Um dieses Modell mehr im Einklang mit unserer Augapfel-Extrapolation der Daten zu bekommen, können wir manuell die Trend-Glättung konstant so einstellen, dass es Verwendet eine kürzere Grundlinie für Trendschätzung Wenn wir z. B. wählen, um 0 1 zu setzen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden, 10 Perioden, was bedeutet, dass wir den Trend über die letzten 20 Perioden oder so vermitteln Hier ist das, was die Prognose-Plot aussieht, wenn wir 0 1 setzen, während wir 0 3 halten. Das sieht intuitiv vernünftig für diese Serie aus, obwohl es wahrscheinlich gefährlich ist, diesen Trend mehr als 10 Perioden in der Zukunft zu extrapolieren. Was geht es um die Fehlerstatistik Hier ist Ein Modellvergleich f Oder die beiden oben gezeigten Modelle sowie drei SES-Modelle Der optimale Wert des SES-Modells beträgt etwa 0 3, aber mit 0 oder 0 2 ergeben sich ähnliche Ergebnisse mit etwas mehr oder weniger Ansprechverhalten. Eine Holt s lineare Exp-Glättung Mit alpha 0 3048 und beta 0 008. B Holt s lineare exp Glättung mit alpha 0 3 und beta 0 1. C Einfache exponentielle Glättung mit alpha 0 5. D Einfache exponentielle Glättung mit alpha 0 3. E Einfache exponentielle Glättung mit alpha 0 2.Die Statistiken sind fast identisch, so dass wir wirklich die Wahl auf der Basis von 1-Schritt-voraus Prognose Fehler innerhalb der Daten Probe Wir müssen auf andere Überlegungen zurückfallen Wenn wir stark glauben, dass es sinnvoll ist, die aktuelle Basis zu stützen Trend-Schätzung, was in den letzten 20 Perioden passiert ist, so können wir einen Fall für das LES-Modell mit 0 3 und 0 1 machen. Wenn wir agnostisch sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle Sei leichter zu erklären und würde auch mehr middl geben E-of-the-road Prognosen für die nächsten 5 oder 10 Perioden Zurück zum Seitenanfang. Welche Art der Trend-Extrapolation ist am besten horizontal oder linear Empirische Hinweise deuten darauf hin, dass, wenn die Daten bereits angepasst wurden, wenn nötig für die Inflation, dann Es kann unklug sein, kurzfristige lineare Trends sehr weit in die Zukunft zu extrapolieren Trends, die heute deutlich sichtbar sind, können aufgrund unterschiedlicher Ursachen wie Produktveralterung, verstärkte Konkurrenz und zyklische Abschwünge oder Aufschwünge in einer Branche aus diesem Grund einfacher exponentieller Fall sein Glättung führt oft zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz seiner naiven horizontalen Trend-Extrapolation Dämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Der gedämpfte Trend LES-Modell kann als Spezialfall eines ARIMA-Modells implementiert werden, insbesondere ein ARIMA 1,1,2-Modell. Es ist möglich, Konfidenzintervalle zu berechnen Langfristige Prognosen, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. Vorsicht nicht, dass alle Software die Konfidenzintervalle für diese Modelle korrekt berechnet. Die Breite der Konfidenzintervalle hängt von dem RMS-Fehler des Modells ab Von Glättung einfach oder linear iii der Wert s der Glättungskonstante s und iv die Anzahl der vorangegangenen Perioden, die Sie prognostizieren Im Allgemeinen breiten sich die Intervalle schneller aus, wenn sie im SES-Modell größer werden und sie breiten sich viel schneller aus, wenn linear und nicht einfach Glättung wird verwendet Dieses Thema wird im ARIMA-Modell-Abschnitt der Notizen weiter unten diskutiert. Zurück zum Seitenanfang.
No comments:
Post a Comment